Select your language

Modèles d'EDP en Sciences Sociales

Les sciences sociales posent des défis importants à la modélisation mathématique, en particulier pour concevoir des méthodes prédictives. Les Equations aux Dérivées Partielles sont aujourd'hui un outil majeur dans ce domaine.

Ce workshop a présenté plusieurs cas d'étude de modèles d'EDP en sciences sociales : dynamiques d'opinion et réalisation de consensus, mouvements de foule, économie et distribution de la richesse.

Cet événement a été organisé par la Fondation Sciences Mathématiques de Paris et a constitué la clôture de la Chaire d'excellence de Peter Markowich (lauréat en 2011) au LJLL et au CEREMADE. Cette journée a eu lieu le Vendredi 24 Janvier 2014 au Laboratoire Jacques‑Louis Lions, UPMC.

Programme scientifique

    Laurent Boudin (LJLL, UPMC) : Mathematical Models for Opinion Dynamics Marie‑Therese Wolfram (KAUST, KSA) : On the Mathematical Modeling and Simulation of Crowd Motion Guillaume Carlier (CEREMADE Dauphine) : Equilibria in Games with a Continuum of Agents and Transport Giuseppe Toscani (Universita’ di Pavia, Italy) : Knowledge and Ingenuity: A Kinetic Approach Pierre‑Emmanuel Jabin (University of Maryland, USA) : Convergence to Consensus in Models with a Finite Range of Interactions Peter Markowich (KAUST, KSA) : Allocution de clôture

Organisateurs

Jean Dolbeault (CEREMADE), Peter Markowich (KAUST) et Benoît Perthame (LJLL)

Les exposés

Mathematical Models for Opinion Dynamics par Laurent Boudin
About a decade ago mathematicians started to study opinion dynamics models. Various viewpoints have been proposed. In this talk, we shall mostly focus on kinetic models for opinion formation and discuss various phenomena which may affect the evolution of opinions inside a closed community.
Retrouvez ici les diapositives de cet exposé.

Continue reading