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Voting

1. n voters
2. m candidates (C = set of candidates)
3. a profile = a collection of n preference relations (rankings)

P = (�1, . . . ,�n)

�i vote expressed by voter i .

Here is a 100-voter profile over C = {a,b,c,d ,e}

33 votes: a� b � c � d � e
16 votes: b � d � c � e � a
3 votes: c � d � b � a� e
8 votes: c � e � b � d � a
18 votes: d � e � c � b � a
22 votes: e � c � b � d � a



Positional scoring rules
I n voters, m candidates
I fixed list of m integers s1 ≥ . . .≥ sm, with s1 > sm

I if voter i ranks candidate x in position j then scorei(x) = sj

I winner(s): candidate(s) maximizing

s(x) =
n

∑
i=1

scorei(x)

plurality s1 = 1, s2 = . . . = sm = 0 7→ winner: a

Borda s1 = m−1, s2 = m−2, . . . sm = 0 7→ winner: b

I How many steps does an algorithm need to compute the
winner(s)?

I O(nm) in the general case (sometimes less)
I Positional rules are polynomial-time computable
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Majority graph

pairwise majority
given any two alternatives x ,y ∈ X , use the majority
rule to determine whether the group prefers x to y
or vice versa.

Does this work? Sometimes yes:

33 votes: a� b � c � d � e
16 votes: b � d � c � e � a
3 votes: c � d � b � a� e
8 votes: c � e � b � d � a
18 votes: d � e � c � b � a
22 votes: e � c � b � d � a

associated majority graph
a

b

c

d

e

Collective preference relation: c � b � d � e � a

Winner: c



Majority graph

pairwise majority
given any two alternatives x ,y ∈ X , use the majority
rule to determine whether the group prefers x to y
or vice versa.

Does this work? Sometimes no:
33 votes: a� b � d� c� e
16 votes: b � d � c � e � a
3 votes: c � d � b � a� e
8 votes: c � e � b � d � a
18 votes: d � e � c � b � a
22 votes: e � c � b � d � a

associated majority graph
a

b

c

d

e

Collective preference relation: {b � c � d � b � ...} � e � a;

Winner: ?



Condorcet winner

I N(x ,y) = #{i,x �i y} number of voters who prefer x to y .
I x Condorcet winner if for all y 6= x , N(x ,y) > n

2

a

b

c

d

e

c Condorcet winner

a

b

c

d

e

no Condorcet winner

I sometimes there is no Condorcet winner
I when there is a Condorcet winner, it is unique
I a rule is Condorcet-consistent if it outputs the Condorcet

winner whenever there is one.



The Copeland rule

I P profile 7→ M(P) directed graph associated with P

I A voting rule r is based on the majority graph if
r(P) = f (M(P)) for some function f .

I For simplicity, assume an odd number of voters: the majority
graph is a complete asymmetric graph (a tournament).

I Cop(x) = number of candidates y such that M(P) contains
x −→ y .

I Copeland winner(s): argmaxc∈CCop(x).

a

b

c

d

C(a) = 2
C(b) = 2
C(c) = 1
C(d) = 1

Copeland winners: a,b



The Copeland rule

I Computing the Copeland winner(s)
1. construct the majority graph: for each pair (x ,y), determine

the direction of the edge. O(n m2)
2. for each candidate, compute its Copeland score and output

the candidate(s) with largest score O(m logm)

I complexity: O(n m2)

I The Copeland rule is polynomial-time computable



The Banks rule

I look for the maximal subsets C′ or C such that the restriction
of M(P) to C′ is transitive.

I the restriction of M(P) to these subsets are called maximal
transitive subtournaments of M(P)

I x is a Banks winner if x is dominating in some maximal
subtournament of M(P).
a

b

c

d

Maximal subtournaments of M(P):
I {a,b,c} winner: a

I {b,c,d} winner: b

I {a,d} winner: d

Banks winners: a,b,d



The Banks rule

Computing one Banks winner:
I construct the majority graph M(P)

I take an arbitrary order of candidates x1 . . .xm

I S← /0

for i = 1 . . .m:
if the restriction of M(P) to S∪{xi} is transitive
then S← S∪{xi}
end if

end for
I return the dominating candidate in S

Complexity: O(nm2 + m3)



The Banks rule

Computing all Banks winners:
I construct the majority graph
I find all maximum transitive subtournaments
I for each of them, determine the winner
I return all winners

Complexity: O(nm2 + 2m)



The Banks rule

I some Banks winner can be found in polynomial time
I finding all seemingly needs exponential time
I even finding out whether a given candidate x is a Banks

winner seemingly needs exponential time
I this problem is NP-hard

I if x is a Banks winner then there is a succinct certificate that
proves it: a maximal subtournament in which x is dominating

I this problem is in NP

I finding out whether a given candidate x is a Banks winner is
both in NP and NP-hard: it is NP-complete



The maximin rule

I NP(x ,y) = #{i,x �i y} number of voters who prefer x to y .
I A voting rule r is based on the weighted majority graph if

r(P) = g(NP) for some function g.

I maximin score: Sm(x) = miny 6=x NP(x ,y)

I winner(s) maximize Sm(x)

NP a b c d e Sm

a − 33 33 33 36 33
b 67 − 49 79 52 49
c 67 51 − 33 60 33
d 67 21 67 − 70 21
e 66 48 40 30 − 30

maximin winner: b

Computing the maximin rule: O(nm2)



The Kemeny rule

I for each ranking of candidates R, the Kemeny score of R is

K (R) = ∑{NP(x ,y) | (x ,y) such that x >R y}

I Kemeny consensus = ranking with maximal Kemeny score
I Kemeny winner: best candidate in some Kemeny consensus

NP a b c d e
a − 33 33 33 36
b 67 − 49 79 52
c 67 51 − 33 60
d 67 21 67 − 70
e 66 48 40 30 −

K (bcdea) =?
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The Kemeny rule

I for each ranking of candidates R, the Kemeny score of R is

K (R) = ∑
x ,y |x>Ry

N(x ,y)

I Kemeny consensus = ranking with maximal Kemeny score
I Kemeny winner: best candidate in some Kemeny consensus

NP a b c d e
a − 33 33 33 36
b 67 − 49 79 52
c 67 51 − 33 60
d 67 21 67 − 70
e 66 48 40 30 −

K (bcdea) = 610
K (bdcea) = 644
Kemeny consensus: bdcea
Kemeny winner: b



The Kemeny rule

Computing the Kemeny rule:
I for each ranking R, compute K (R): 2m iterations
I determining whether x is a Kemeny winner is NP-hard

I can we find a Kemeny winner in polynomial time?
I if x is a Kemeny winner, is there a succinct certificate for x?
I most probably not: winner determination needs

logarithmically many NP-oracles
I the problem is ΘP

2 -complete



The Kemeny rule

Computing the Kemeny rule:
I Polynomial approximation

I a 4/3-approximation algorithm based on linear programming
I a 11/7-approximation algorithm (more sophisticated)
I existence of a polynomial-time approximation scheme (but not

efficient in practice)
I Parameterized complexity

Winner can be computed in time O(2mm2n)
I Practical algorithms

I translation into integer linear programming
I branch and bound,
I heuristic search based on Borda scores



Computing voting rules

Three classes of rules:
I winner determination in P: easy to compute

I positional scoring rules, Copeland, maximin, . . .
I winner determination is NP-complete: not easy to compute

but easy to verify a solution using a succinct certificate
I Banks, . . .

I winner determination is beyond NP: not even easy to verify.
I Kemeny, . . .



Is there a life after NP-hardness?

I efficient computation: design algorithms that do as well as
possible, possibly using heuristics, or translations into
well-known frameworks (such as integer linear programming).

I fixed-parameter complexity: isolate the components of the
problem and find the main cause(s) of hardness.

I approximation: design algorithms that produce a (generally
suboptimal) result, with some performance guarantee.

I The approximation of a voting rule is a new voting rule that
may be interesting per se.



Multiple round rules

Plurality with runoff
I let x ,y the two candidates with the highest plurality score

(use tie-breaking rule if necessary)
I winner: majority winner between x and y

33 a �b �c �d �e
16 b �d �c �e �a
3 c �d �b �a �e
8 c �e �b �d �a
18 d �e �c �b �a
22 e �c �b �d �a

I first step: keep a and e

I winner: e



Multiple round rules

Single transferable vote (STV)

Repeat
x := candidate ranked first by the fewest voters;
eliminate x from all ballots
{votes for x transferred to the next best remaining candidate}

Until some candidate y is ranked first by more than half of the votes;
Winner: y

I When there are only 3 candidates, STV coincides with
plurality with runoff.

I STV is used for political elections in several countries (at
least Australia and Ireland)



Single transferable vote (STV)

33 a �b �c �d �e
16 b �d �c �e �a
3 c �d �b �a �e
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33 a �d �e
16 d �e �a
3 d �a �e
8 e �d �a
18 d �e �a
22 e �d �a

33 a �d
16 d �a
3 d �a
8 d �a
18 d �a
22 d �a

winner: d



Single transferable vote (STV)

(*) How do we handle ties in STV?

STVT ties are broken immediately using a tie-breaking
priority T : polynomial

STVPU exploring all possibilities and possible use
tie-breaking at the very last moment: NP-complete

4 a� d � b � c
3 b � c � d � a
2 c � d � a� b
2 d � b � c � a

Tie-breaking :
a > b > d > c

I break ties immediately: c
eliminated, then b, winner: d

I parallel universes:
I branch 1 (above): winner: d
I branch 2: d eliminated, then

c, winner: a
I winners {a,d}, winner: a.



Computing voting rules

Three classes of rules:
I winner determination in P: easy to compute

I positional scoring rule, Copeland, maximin, plurality with
runoff, STVT , and others

I winner determination is NP-complete: not easy to compute
but easy to verify a solution using a succinct certificate

I Banks, STVPU , and others
I winner determination is beyond NP: not even easy to verify.

I Kemeny, Slater, and others



Communication complexity of voting rules

I Voting rule
I profile (V1, . . . ,Vn) 7→ winner(s) r(V1, . . . ,Vn)
I does not specify how the votes Vi are elicited from the voters

by the central authority.
I Protocol for a voting rule r

I informally: similar to an algorithm, except that instructions
are replaced by communication actions, and such that
communication actions are based on the private information of
the agents.

I Vi is the private information of agent (voter) i .
I Communication complexity of a voting rule r :

I minimum cost of a protocol for r .



Communication complexity of voting rules

I An obvious protocol that works for any voting rule r :
1. every voter i sends her vote Vi to the central authority
2. the central authority sends back the name of the winner to all

voters

I step 1: n log(m!) = O(n m logm) bits
I step 2: ignored (or else: n logm bits)

from now on, we shall ignore step the cost of information flow
from the central authority to the voters.

I The communication complexity of an arbitrary voting rule r is
in O(n m logm)



Communication complexity: plurality with runoff

I An easy protocol for plurality with runoff:
1. voters send the name of their most preferred candidate to the

central authority
2. the central authority sends the names of the two finalists to

the voters
3. voters send the name of their preferred finalist to the central

authority

I step 1: n logm bits
I step 2: ignored (or else: 2n logm bits)
I step 3: n bits
I total: O(n logm)
I lower bound matches (Conitzer & Sandholm, 05)

I the communication complexity of plurality with runoff is in
Θ(n logm)



Communication complexity: STV

I A protocol for STV (Conitzer & Sandholm, 05)
1. voters send their most preferred candidate to the central

authority (C)
2. let x be the candidate ranked first in the smallest number of

votes. All voters who had x ranked first receive a message
from C asking them to send the name of their next preferred
candidate.

3. repeat step 2 until there is a candidate ranked first in a
majority of votes

I after doing t times step 2: x ranked first in at most n
m−t votes

I cost of protocol

≤ n logm(1 + 1/m + 1/m−1 + . . .+ 1/2) = O(n (logm)2)

I lower bound Ω(n logm)
I gap still open!



Multiwinner voting rules

I n voters
I m candidates (C = set of candidates)
I k number of candidates to be elected



Condorcet winning sets

I S is a Condorcet winning set for profile P if for each x /∈ S, a
majority of votes rank at least one element of S above x .

I P = (abcd ,cdab,dabc):
I {a,c} is a Condorcet winning set;
I {b,c} is not a Condorcet winning set because of a.

I Condorcet dimension of a profile P = cardinality of the
smallest Condorcet winning set for P

I P has Condorcet dimension 1 if it has a Condorcet winner
I P = (abcd ,cdab,dabc) has Condorcet dimension 2: no

Condorcet winner; {a,c} Condorcet winning set.
I there exists a 6-candidate 6-voter profile of Condorcet

dimension 3.
I does there exist a profile of Condorcet dimension n, for all n?

Nobody knows.
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Compiling votes: what, why, how
Two contexts, two motivations:

I time
I votes may not come all together at the same time

(who has ever organised a Doodle-like poll where everyone voted on
time?)

I preprocess the information given by the votes obtained so far,
so as to “prepare the ground” for the time when the remaining
votes are known, using as little space as possible

I space
I the electorate is split into different districts (or voting polls)
I each district counts its ballots separately and sends the

outcome to the central authority, which determines the final
outcome

I which (minimal) information should the districts send?
I useful for verification:

I in each district, the voters can check the local results
I local results are made public; they are sufficient for computing

the final outcome
I if storing the local results takes too much space, it is

impractical to publish the results locally



Compilation functions for a voting rule
I f voting rule (resolute or irresolute)

P

R

σ(P)

ρ(σ(P),R)
= f (P ∪R)

compilation

[time]

P1

P2

σ(P1)

σ(P2)

τ(σ(P1,σ(P2))
= f (P1∪P2)

compilation

compilation
[space]

I σ is a compilation function for f if
time there is a function ρ such that ρ(σ(P),R) = f (P ∪R) for all P,

R.
space there is a function τ such that

τ(σ(P1), . . . ,σ(Pk )) = f (P1∪ . . .∪Pk ) for all P1, . . . ,Pk



Compilation functions for a voting rule

I f voting rule (resolute or irresolute)

P

R

σ(P)

ρ(σ(P),R)
= f (P ∪R)

compilation

[time]

I f = Borda
I σ(P): vector of (partial) Borda scores obtained from votes in P

P = 〈abc, abc, cba, bca〉 7→ σ(P) = 〈a : 3; b : 5; c : 3〉

I ρ(σ(P),R) = argmaxx∈X (sB(x | P) + sB(x | R))

R = 〈cab,abc〉 7→ 〈a : 3+3; b : 5+1; c : 3+2〉→ ρ(σ(P),R) = b



Compilation complexity of a voting rule

I σ compilation function for f

I Size(σ) = max{|σ(P)|, P partial profile}
I compilation complexity of f :

C(f ) = min{Size(σ) | σ compilation function for r}

I σ optimal compilation if Size(Σ) = C(f )

I C(f ) = size of an optimal compilation function for f =
minimum space needed to compile P



Equivalent profiles for a voting rule

I f voting rule

I two partial profiles P and Q are f -equivalent (noted P ∼f Q)
if

for every R we have f (P ∪R) = f (Q∪R)

I P = (abc,cba) and Q = (bac,cab) are Borda-equivalent

I P = (abc,bca) and Q = (bac,cba) are not Borda-equivalent:
I R = (acb)
I f (P ∪R) = {a}
I f (Q∪R) = {a,b,c}



Compilation complexity
A useful result (similar result for one-round communication
complexity, Kushilevitz & Nisan 97):

I f voting rule
I n number of initial voters, m number of candidates.
I Theorem: if the equivalence relation for f has g(n,m)

equivalence classes then

C(r) = dlogg(n,m)e

Consequences:

I for any f , C(f )≤ n log(m!)

I if f is anonymous: C(f )≤min(n log(m!),m! logn)

I C(dictatorship) = logm

I C(f ) = 0 if and only if f is constant



Compilation complexity: positional scoring rules

I fs induced by scoring vector s

I SP(x) score that x obtains from votes in P

I P and Q are equivalent iff for all x , SP(x) = SQ(x)

I optimal compilation: (SP(x))x∈X

I number of equivalence classes = number of ways of
distributing scores to candidates

In particular:

C(plurality) = Θ
(

m log
n
m

+ n log
m
n

)
C(Borda) = Θ(m lognm)



Compilation complexity: tournament solutions

I MP majority graph for P

I f based on the majority graph: f (P) = h(MP)

I is P 7→MP a compilation function for f?

no because knowing
MP does not allow us to determine MP∪R

I mP pairwise majority matrix (weighted majority graph)
I mP = mQ implies P ∼f Q.
I the converse does not hold (e.g., constant rules)
I if f is Condorcet-consistent: if P ∼f Q then mP = mQ

I If f is a tournament solution (Condorcet-consistent + based
on the majority graph):

I P ∼f Q iff mP = mQ
I numer of equivalence classes = number of pairwise majority

matrices that are implemented by some n-voter profile
I C(f ) = Θ(m2 logn)
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Compilation complexity: tournament solutions

I mP pairwise majority matrix (weighted majority graph)
I f is based on the pairwise majority matrix: f (P) = h(mP)

I mP = mQ implies P ∼f Q.
I if f is a weighted tournament solution (based on pmm +

Condorcet-consistent):
I P ∼f Q if and only if mP = mQ
I C(f ) = Θ(m2 logn)



Compilation complexity: plurality with runoff

I P ∼pl-ro Q if and only if these two conditions hold:
I for every x , ntop(P,x) = ntop(Q,x)
I mP = mQ

I optimal compilation: plurality scores + pairwise majority
matrix

I C(pl-ro) = Θ(m2 logn)



Compilation complexity: STV

I for Z ⊆ X and profile P, let P−Z be obtained from P by
removing candidates in Z

I ntop(P−Z ,x) number of votes in P−Z who rank x on top
I P ∼STV Q iff for all Z ⊆ X and x /∈ Z ,

ntop(P−Z ,x) = ntop(Q−Z ,x)

I optimal compilation: ntop(P−Z ,x)Z⊆X ,x /∈Z

I C(STV ): lower and upper bounds do not coincide; see the
paper.



Advertising

I An experimental voting platform: Whale (developed by
Sylvain Bouveret, LIG): http://whale3.noiraudes.net/

I Testing various voting rules for the French presidential
elections (2027, 2022) https://vote.imag.fr

http://whale3.noiraudes.net/
https://vote.imag.fr

