Une introduction aux courbes elliptiques

Riccardo Brasca

Math en mouvement 2025 : théorie des nombres

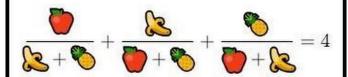
15 novembre 2025

On trouve sur internet beaucoup de questions mathématiques pas très intéressantes

Only genius can do this!

facebook.com/Thinkmath.kenyousee

95% of people cannot solve this!



Can you find positive whole values

for , , and ??

Les fruits c'est bien mais...

On cherche $x, y, z \in \mathbb{N}_{>0}$ tels que

$$\frac{x}{y+z} + \frac{y}{x+z} + \frac{z}{x+y} = 4$$

C'est plus raisonnable de travailler dans $\ensuremath{\mathbb{Z}}$ et chercher à la fin des solutions positives

En se débarrassant des dénominateurs (attentions aux nouvelles solutions!) on a

$$x(x + y)(x + z) + y(x + y)(y + z) + z(z + x)(z + y) = 4(x + y)(x + z)(y + z)$$

Il s'agit d'une équation de degré 3 en trois variables (difficile!), mais elle est *homogène*

Si (x,y,z) est une solution alors $(\lambda x,\lambda y,\lambda z)$ l'est aussi, pour tout $\lambda\in\mathbb{Q}^*$

Si z=0 on obtient

$$(x + y)(x^2 + y^2) = 4xy(x + y)$$

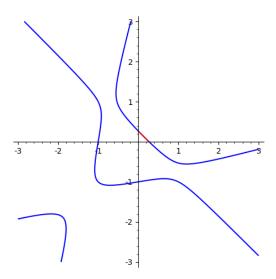
Donc x=-y ou $(2x-y)^2=3x^2$ ce qui est impossible car $\sqrt{3}\notin\mathbb{Q}$ À partir d'ici on suppose $z\neq 0$.

Quitte à multiplier par z^{-1} , on peut supposer z=1 et on cherche les solutions *rationnelles* de

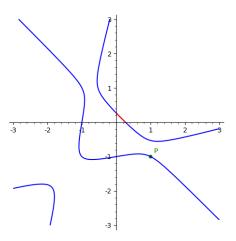
$$x^3 + y^3 - 3(x + y + x^2 + y^2 + xy^2 + x^2y) + 1 = 5xy$$

Il s'agit d'une courbe, et on peut dessiner les solutions réelles

On cherche donc les points avec *les deux coordonnés rationnelles* dans la région rouge de la courbe

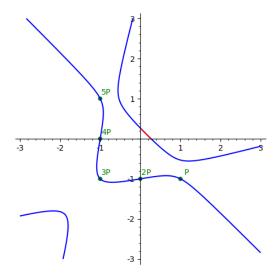


C'est facile de trouver sur la courbe des points avec les deux coordonnés rationnelles : P=(1,-1)

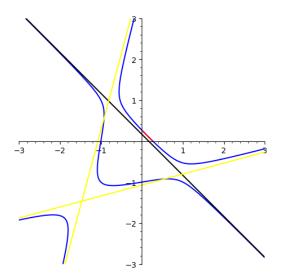


Mais ça ne donne pas une solution à l'équation de depart à cause des dénominateurs

Et pareil pour (0,-1), (-1,-1), (-1,0) et (-1,1)



Notre courbe a trois asymptotes : $y+x=1/6, \ x-(2+\sqrt{3})y=4$ et $y-(2+\sqrt{3})x=4$



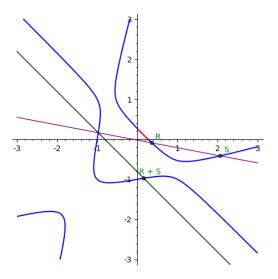
Il faut penser que A, le premier asymptote intersect la courbe en un point (à coordonnés rationnelles!) « très loin », à l'infini

Cela peut être rendu précis en utilisant la géométrie projective, et ça correspond aux points de l'équation initiale avec z=0

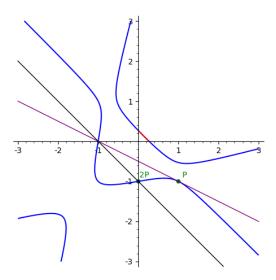
Si R et S sont deux points sur la courbe on peut faire la procedure suivante pour trouver un troisième point sur la courbe

- On trace la droite L qui passe par R et S
- Étant l'équation de degré 3, on a que L intersecte la courbe en un troisième point $\mathcal T$
- ullet On regarde la droite A' parallèle à A qui passe par T
- A' intersecte la courbe en seulement deux point (plus le point « très loin », donc au total c'est trois!) : T et un point qu'on appelle R+S

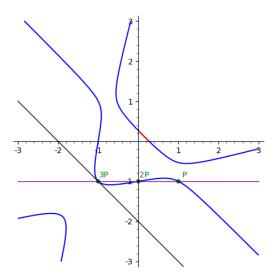
Ça peut paraître un peu délirant, mais voici un dessin



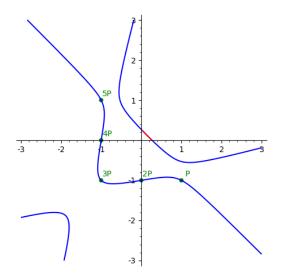
Si on prend deux fois le même point P c'est la même procedure, mais on commence avec la droite tangente à la courbe en P.



Voici le calcul de 3P = P + 2P.



Cela explique les noms ci-dessus



Pour calculer 6P=P+5P il faut consider la droite qui passe par (1,-1) et (-1,1), ce qui est Y=-X, donc il n'y pas de troisième point d'intersection!

La solution est d'introduire un point, noté 0, qui est l'intersection de la courbe et de la droite Y = -X à l'infini

Il s'agit du point à l'infini deja mentionné

La droite A' est en général la droite qui passe par T et par 0

Calculons 6P:

- La droite qui passe par P et 5P, qui est Y = -X, intersecte la courbe en P, 5P et le point « fictif » T = 0.
- La droite A' est la droite qui passe par 0 deux fois : elle est la tangente à la courbe en 0
- Cette droite doit être parallèle à A. De plus, elle ne peut pas intersecter la courbe en aucun autre point
- On peut démontrer qu'il s'agit de *A*, qui a donc une intersection *triple* en 0 avec la courbe
- En particulier on a

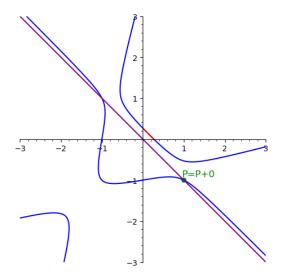
$$6P = P + 5P = 0$$

Il nous reste à calculer R + 0

- On trace la droite L qui passe par R et 0 : c'est la parallèle à A qui passe par R
- ullet On note T le troisième point d'intersection
- On a que A' et L sont parallèles
- A' intersecte la courbe en T et R (plus le point 0 à l'infini)
- Finalement on a

$$R + 0 = R$$

Voici le dessin de P + 0 = P



- La procédure marche pour tout R et S, et on obtient un point bien défini R + S qui est sur la courbe
- On a R + S = S + R
- On a R + 0 = R
- Pour tout R il existe un point S tel que R + S = 0
- Si R et S sont à coordonnés rationnelles alors R+S est aussi à coordonnés rationnelles
- Le calcul de R + S est facile à faire en pratique
- L'opération + est associative

On a donc que l'ensemble de points à coordonnés rationnelles de la courbe, plus le point à l'infini 0, est un *group abélien*

On a que 6P=0 et donc P est un point d'ordre fini On ne peut pas l'utiliser pour fabriquer d'autre points, on a

$$15P = 3P$$

Avec un peu d'effort on trouve un autre point sur la courbe

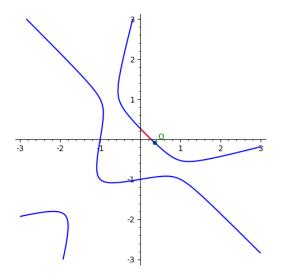
$$Q = (4/11, -1/11)$$

Ça correspond à la solution de l'équation initiale

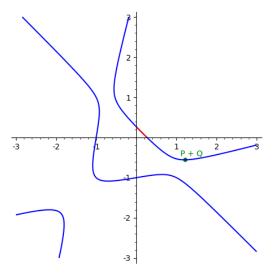
$$x = 4$$
 $y = -1$ $z = 11$

qui est dans \mathbb{Z} (mais malheureusement pas dans $\mathbb{N}_{>0}$)

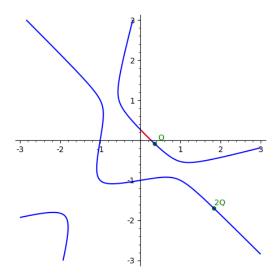
Le point Q



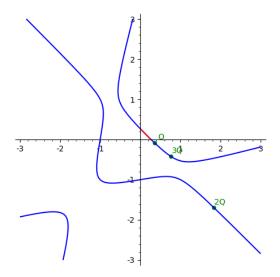
On peut maintenant utiliser P et Q pour fabriquer d'autres points, en espérant d'en trouver un dans la zone rouge. Voici P+Q, qui ne marche pas



Et 2Q, qui ne marche pas non plus



Pas de chance avec 3Q



Additionner des multiples de P n'aide pas, mais on peut continuer avec les multiples de Q

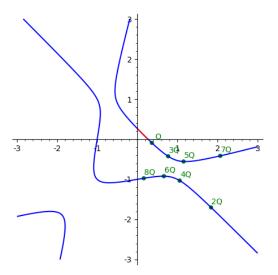
Le calcul des coordonnés est faisable en pratique, et il nous donne des solutions de l'équation initiale très difficiles à trouver à la main.

Par exemple

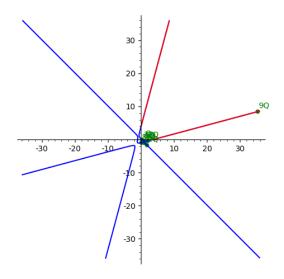
$$2Q = (9499/5165, -8784/5165)$$

$$3Q = (679733219/883659076, -375326521/883659076)$$

On insiste jusqu'à 8Q sans trouver une solution...



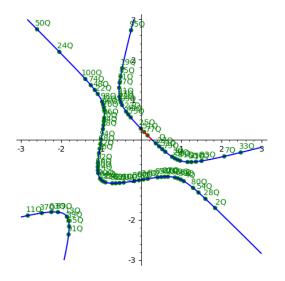
Mais 9Q marche!



Ça donne la solution suivante au problème de depart

* = 43736126779286972578612526023713901528165375581616 13618621437993378423467772036

77Q marche aussi (et il est de taille totalement délirante)



= 1195934139635982449275539112669622605646307000244901347106614451933346869142419025766413862067477...

a 5816 chiffres

Un courbe (projective et lisse) E qui est aussi un groupe s'appelle $une \ courbe \ elliptique$

Notre equation donne un example d'une telle courbe

 $E(\mathbb{Q})$ est donc un groupe, qui est toujours $\mathit{finiment engendr\'e}$

Dans notre cas on a

$$E(\mathbb{Q}) \cong \mathbb{Z}/6 \oplus \mathbb{Z}$$

Et on a trouvé tous les points de torsions!

Vu que l'équation est à coefficient dans \mathbb{Z} on peut aussi compter les solutions modulo p pour un premier p... mais c'est une autre histoire